Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
bioRxiv ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38712152

RESUMO

Cancer progression is an evolutionary process driven by the selection of cells adapted to gain growth advantage. We present the first formal study on the adaptation of gene expression in subclonal evolution. We model evolutionary changes in gene expression as stochastic Ornstein-Uhlenbeck processes, jointly leveraging the evolutionary history of subclones and single-cell expression data. Applying our model to sublines derived from single cells of a mouse melanoma revealed that sublines with distinct phenotypes are underlined by different patterns of gene expression adaptation, indicating non-genetic mechanisms of cancer evolution. Interestingly, sublines previously observed to be resistant to anti-CTLA-4 treatment showed adaptive expression of genes related to invasion and non-canonical Wnt signaling, whereas sublines that responded to treatment showed adaptive expression of genes related to proliferation and canonical Wnt signaling. Our results suggest that clonal phenotypes emerge as the result of specific adaptivity patterns of gene expression.

2.
J Emerg Nurs ; 49(5): 765-775, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37269252

RESUMO

INTRODUCTION: After coronavirus disease 2019, there has been an increase in patients in the emergency department with mental health conditions. They are usually received by professionals who are not specialized in mental health. This study aimed to describe nursing staff's experiences in the emergency department, in the care they provide to people with mental health problems who often feel stigmatized by society and also in health care settings. METHODS: This is a descriptive qualitative study with a phenomenological approach. The participants were nurses from the Spanish Health Service from the emergency department of the Community of Madrid hospitals. Recruitment was performed by convenience sampling snowball sampling until data satruation was met. Data were collected through semistructured interviews conducted during January and February 2022. RESULTS: The exhaustive and detailed analysis of the nurses' interviews made it possible to extract 3 main categories-health care, psychiatric patient, and work environment-with 10 subcategories. DISCUSSION: The main study findings were the need to train emergency nurses to be prepared to care for people who experience mental health concerns including bias education and the need for implementation of standardized protocols. Emergency nurses never doubted their ability to care for people experiencing mental health disorders. Still, they recognized that they needed specialized professionals' support at certain critical moments.


Assuntos
COVID-19 , Transtornos Mentais , Humanos , Saúde Mental , Serviço Hospitalar de Emergência , Pesquisa Qualitativa
3.
bioRxiv ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333132

RESUMO

Intratumoral heterogeneity (ITH) can promote cancer progression and treatment failure, but the complexity of the regulatory programs and contextual factors involved complicates its study. To understand the specific contribution of ITH to immune checkpoint blockade (ICB) response, we generated single cell-derived clonal sublines from an ICB-sensitive and genetically and phenotypically heterogeneous mouse melanoma model, M4. Genomic and single cell transcriptomic analyses uncovered the diversity of the sublines and evidenced their plasticity. Moreover, a wide range of tumor growth kinetics were observed in vivo , in part associated with mutational profiles and dependent on T cell-response. Further inquiry into melanoma differentiation states and tumor microenvironment (TME) subtypes of untreated tumors from the clonal sublines demonstrated correlations between highly inflamed and differentiated phenotypes with the response to anti-CTLA-4 treatment. Our results demonstrate that M4 sublines generate intratumoral heterogeneity at both levels of intrinsic differentiation status and extrinsic TME profiles, thereby impacting tumor evolution during therapeutic treatment. These clonal sublines proved to be a valuable resource to study the complex determinants of response to ICB, and specifically the role of melanoma plasticity in immune evasion mechanisms.

4.
Nat Commun ; 14(1): 2744, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173324

RESUMO

With the continued promise of immunotherapy for treating cancer, understanding how host genetics contributes to the tumor immune microenvironment (TIME) is essential to tailoring cancer screening and treatment strategies. Here, we study 1084 eQTLs affecting the TIME found through analysis of The Cancer Genome Atlas and literature curation. These TIME eQTLs are enriched in areas of active transcription, and associate with gene expression in specific immune cell subsets, such as macrophages and dendritic cells. Polygenic score models built with TIME eQTLs reproducibly stratify cancer risk, survival and immune checkpoint blockade (ICB) response across independent cohorts. To assess whether an eQTL-informed approach could reveal potential cancer immunotherapy targets, we inhibit CTSS, a gene implicated by cancer risk and ICB response-associated polygenic models; CTSS inhibition results in slowed tumor growth and extended survival in vivo. These results validate the potential of integrating germline variation and TIME characteristics for uncovering potential targets for immunotherapy.


Assuntos
Imunoterapia , Neoplasias , Células Germinativas , Mutação em Linhagem Germinativa , Inibição Psicológica , Macrófagos , Microambiente Tumoral/genética , Neoplasias/genética , Neoplasias/terapia
5.
Pigment Cell Melanoma Res ; 35(6): 554-572, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35912544

RESUMO

Brain metastases are the most common brain malignancy. This review discusses the studies presented at the third annual meeting of the Melanoma Research Foundation in the context of other recent reports on the biology and treatment of melanoma brain metastases (MBM). Although symptomatic MBM patients were historically excluded from immunotherapy trials, efforts from clinicians and patient advocates have resulted in more inclusive and even dedicated clinical trials for MBM patients. The results of checkpoint inhibitor trials were discussed in conversation with current standards of care for MBM patients, including steroids, radiotherapy, and targeted therapy. Advances in the basic scientific understanding of MBM, including the role of astrocytes and metabolic adaptations to the brain microenvironment, are exposing new vulnerabilities which could be exploited for therapeutic purposes. Technical advances including single-cell omics and multiplex imaging are expanding our understanding of the MBM ecosystem and its response to therapy. This unprecedented level of spatial and temporal resolution is expected to dramatically advance the field in the coming years and render novel treatment approaches that might improve MBM patient outcomes.


Assuntos
Neoplasias Encefálicas , Melanoma , Segunda Neoplasia Primária , Humanos , Ecossistema , Melanoma/patologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/secundário , Imunoterapia/métodos , Segunda Neoplasia Primária/patologia , Encéfalo , Microambiente Tumoral
7.
Nat Comput Sci ; 2(9): 577-583, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38177468

RESUMO

We introduce HUNTRESS, a computational method for mutational intratumor heterogeneity inference from noisy genotype matrices derived from single-cell sequencing data, the running time of which is linear with the number of cells and quadratic with the number of mutations. We prove that, under reasonable conditions, HUNTRESS computes the true progression history of a tumor with high probability. On simulated and real tumor sequencing data, HUNTRESS is demonstrated to be faster than available alternatives with comparable or better accuracy. Additionally, the progression histories of tumors inferred by HUNTRESS on real single-cell sequencing datasets agree with the best known evolution scenarios for the associated tumors.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Análise de Sequência , Mutação
8.
Science ; 374(6575): 1632-1640, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34941392

RESUMO

Gut bacteria modulate the response to immune checkpoint blockade (ICB) treatment in cancer, but the effect of diet and supplements on this interaction is not well studied. We assessed fecal microbiota profiles, dietary habits, and commercially available probiotic supplement use in melanoma patients and performed parallel preclinical studies. Higher dietary fiber was associated with significantly improved progression-free survival in 128 patients on ICB, with the most pronounced benefit observed in patients with sufficient dietary fiber intake and no probiotic use. Findings were recapitulated in preclinical models, which demonstrated impaired treatment response to anti­programmed cell death 1 (anti­PD-1)­based therapy in mice receiving a low-fiber diet or probiotics, with a lower frequency of interferon-γ­positive cytotoxic T cells in the tumor microenvironment. Together, these data have clinical implications for patients receiving ICB for cancer.


Assuntos
Fibras na Dieta , Microbioma Gastrointestinal , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/terapia , Probióticos , Animais , Estudos de Coortes , Ácidos Graxos Voláteis/análise , Transplante de Microbiota Fecal , Fezes/química , Fezes/microbiologia , Feminino , Humanos , Imunoterapia , Masculino , Melanoma/imunologia , Melanoma/microbiologia , Melanoma Experimental/imunologia , Melanoma Experimental/microbiologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Intervalo Livre de Progressão , Linfócitos T
10.
Bioinformatics ; 36(Suppl_1): i169-i176, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32657358

RESUMO

MOTIVATION: Recent advances in single-cell sequencing (SCS) offer an unprecedented insight into tumor emergence and evolution. Principled approaches to tumor phylogeny reconstruction via SCS data are typically based on general computational methods for solving an integer linear program, or a constraint satisfaction program, which, although guaranteeing convergence to the most likely solution, are very slow. Others based on Monte Carlo Markov Chain or alternative heuristics not only offer no such guarantee, but also are not faster in practice. As a result, novel methods that can scale up to handle the size and noise characteristics of emerging SCS data are highly desirable to fully utilize this technology. RESULTS: We introduce PhISCS-BnB (phylogeny inference using SCS via branch and bound), a branch and bound algorithm to compute the most likely perfect phylogeny on an input genotype matrix extracted from an SCS dataset. PhISCS-BnB not only offers an optimality guarantee, but is also 10-100 times faster than the best available methods on simulated tumor SCS data. We also applied PhISCS-BnB on a recently published large melanoma dataset derived from the sublineages of a cell line involving 20 clones with 2367 mutations, which returned the optimal tumor phylogeny in <4 h. The resulting phylogeny agrees with and extends the published results by providing a more detailed picture on the clonal evolution of the tumor. AVAILABILITY AND IMPLEMENTATION: https://github.com/algo-cancer/PhISCS-BnB. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Neoplasias , Humanos , Cadeias de Markov , Neoplasias/genética , Filogenia , Análise de Sequência , Software
11.
Nat Med ; 26(5): 781-791, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32284588

RESUMO

Although immunotherapy has revolutionized cancer treatment, only a subset of patients demonstrate durable clinical benefit. Definitive predictive biomarkers and targets to overcome resistance remain unidentified, underscoring the urgency to develop reliable immunocompetent models for mechanistic assessment. Here we characterize a panel of syngeneic mouse models, representing a variety of molecular and phenotypic subtypes of human melanomas and exhibiting their diverse range of responses to immune checkpoint blockade (ICB). Comparative analysis of genomic, transcriptomic and tumor-infiltrating immune cell profiles demonstrated alignment with clinical observations and validated the correlation of T cell dysfunction and exclusion programs with resistance. Notably, genome-wide expression analysis uncovered a melanocytic plasticity signature predictive of patient outcome in response to ICB, suggesting that the multipotency and differentiation status of melanoma can determine ICB benefit. Our comparative preclinical platform recapitulates melanoma clinical behavior and can be employed to identify mechanisms and treatment strategies to improve patient care.


Assuntos
Ensaios de Seleção de Medicamentos Antitumorais , Imunoterapia , Melanoma/patologia , Melanoma/terapia , Animais , Antineoplásicos Imunológicos/uso terapêutico , Antígeno CTLA-4/imunologia , Células Cultivadas , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Heterogeneidade Genética , Humanos , Imunoterapia/efeitos adversos , Imunoterapia/métodos , Ipilimumab/uso terapêutico , Melanoma/diagnóstico , Melanoma/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Prognóstico , Receptor de Morte Celular Programada 1/imunologia , RNA-Seq , Resultado do Tratamento , Sequenciamento Completo do Genoma
12.
Nat Commun ; 11(1): 333, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31949145

RESUMO

Cutaneous malignant melanoma is an aggressive cancer of melanocytes with a strong propensity to metastasize. We posit that melanoma cells acquire metastatic capability by adopting an embryonic-like phenotype, and that a lineage approach would uncover metastatic melanoma biology. Using a genetically engineered mouse model to generate a rich melanoblast transcriptome dataset, we identify melanoblast-specific genes whose expression contribute to metastatic competence and derive a 43-gene signature that predicts patient survival. We identify a melanoblast gene, KDELR3, whose loss impairs experimental metastasis. In contrast, KDELR1 deficiency enhances metastasis, providing the first example of different disease etiologies within the KDELR-family of retrograde transporters. We show that KDELR3 regulates the metastasis suppressor, KAI1, and report an interaction with the E3 ubiquitin-protein ligase gp78, a regulator of KAI1 degradation. Our work demonstrates that the melanoblast transcriptome can be mined to uncover targetable pathways for melanoma therapy.


Assuntos
Perfilação da Expressão Gênica , Melanoma/genética , Melanoma/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Transcriptoma , Animais , Linhagem Celular Tumoral , Retículo Endoplasmático , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Proteína Kangai-1/genética , Proteína Kangai-1/metabolismo , Pulmão/patologia , Melanócitos/metabolismo , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica/genética , Segunda Neoplasia Primária/patologia , Fenótipo , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Neoplasias Cutâneas/patologia , Ubiquitina-Proteína Ligases/metabolismo , Melanoma Maligno Cutâneo
13.
Cell ; 179(1): 219-235.e21, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31522890

RESUMO

Although clonal neo-antigen burden is associated with improved response to immune therapy, the functional basis for this remains unclear. Here we study this question in a novel controlled mouse melanoma model that enables us to explore the effects of intra-tumor heterogeneity (ITH) on tumor aggressiveness and immunity independent of tumor mutational burden. Induction of UVB-derived mutations yields highly aggressive tumors with decreased anti-tumor activity. However, single-cell-derived tumors with reduced ITH are swiftly rejected. Their rejection is accompanied by increased T cell reactivity and a less suppressive microenvironment. Using phylogenetic analyses and mixing experiments of single-cell clones, we dissect two characteristics of ITH: the number of clones forming the tumor and their clonal diversity. Our analysis of melanoma patient tumor data recapitulates our results in terms of overall survival and response to immune checkpoint therapy. These findings highlight the importance of clonal mutations in robust immune surveillance and the need to quantify patient ITH to determine the response to checkpoint blockade.


Assuntos
Heterogeneidade Genética/efeitos da radiação , Melanoma/genética , Melanoma/imunologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Raios Ultravioleta/efeitos adversos , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Estudos de Coortes , Modelos Animais de Doenças , Feminino , Humanos , Linfócitos do Interstício Tumoral , Melanoma/mortalidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Mutação/efeitos da radiação , Filogenia , Neoplasias Cutâneas/mortalidade , Taxa de Sobrevida , Linfócitos T/imunologia , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos da radiação
14.
Cancer Cell ; 35(1): 46-63.e10, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30581152

RESUMO

Modulators of mRNA stability are not well understood in melanoma, an aggressive tumor with complex changes in the transcriptome. Here we report the ability of p62/SQSTM1 to extend mRNA half-life of a spectrum of pro-metastatic factors. These include FERMT2 and other transcripts with no previous links to melanoma. Transcriptomic, proteomic, and interactomic analyses, combined with validation in clinical biopsies and mouse models, identified a selected set of RNA-binding proteins (RBPs) recruited by p62, with IGF2BP1 as a key partner. This p62-RBP interaction distinguishes melanoma from other tumors where p62 controls autophagy or oxidative stress. The relevance of these data is emphasized by follow-up analyses of patient prognosis revealing p62 and FERMT2 as adverse determinants of disease-free survival.


Assuntos
Melanoma/metabolismo , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , RNA Mensageiro/química , Proteínas de Ligação a RNA/metabolismo , Proteína Sequestossoma-1/metabolismo , Animais , Linhagem Celular Tumoral , Progressão da Doença , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/genética , Proteínas de Membrana/química , Camundongos , Proteínas de Neoplasias/química , Transplante de Neoplasias , Mapas de Interação de Proteínas , Proteômica/métodos , Estabilidade de RNA , Análise Serial de Tecidos
15.
Nature ; 548(7669): 537-542, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28783722

RESUMO

Somatic gene mutations can alter the vulnerability of cancer cells to T-cell-based immunotherapies. Here we perturbed genes in human melanoma cells to mimic loss-of-function mutations involved in resistance to these therapies, by using a genome-scale CRISPR-Cas9 library that consisted of around 123,000 single-guide RNAs, and profiled genes whose loss in tumour cells impaired the effector function of CD8+ T cells. The genes that were most enriched in the screen have key roles in antigen presentation and interferon-γ signalling, and correlate with cytolytic activity in patient tumours from The Cancer Genome Atlas. Among the genes validated using different cancer cell lines and antigens, we identified multiple loss-of-function mutations in APLNR, encoding the apelin receptor, in patient tumours that were refractory to immunotherapy. We show that APLNR interacts with JAK1, modulating interferon-γ responses in tumours, and that its functional loss reduces the efficacy of adoptive cell transfer and checkpoint blockade immunotherapies in mouse models. Our results link the loss of essential genes for the effector function of CD8+ T cells with the resistance or non-responsiveness of cancer to immunotherapies.


Assuntos
Genes Essenciais/genética , Imunoterapia , Neoplasias/genética , Neoplasias/terapia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Transferência Adotiva , Animais , Apresentação de Antígeno/genética , Apelina/metabolismo , Receptores de Apelina/genética , Receptores de Apelina/metabolismo , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Feminino , Genoma/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Interferon gama/imunologia , Janus Quinase 1/metabolismo , Bases de Conhecimento , Melanoma/genética , Melanoma/imunologia , Melanoma/metabolismo , Melanoma/terapia , Camundongos , Mutação , Neoplasias/imunologia , Neoplasias/metabolismo , Reprodutibilidade dos Testes , Linfócitos T Citotóxicos/metabolismo
17.
Cancer ; 123(S11): 2089-2103, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28543694

RESUMO

Melanoma is a complex disease that exhibits highly heterogeneous etiological, histopathological, and genetic features, as well as therapeutic responses. Genetically engineered mouse (GEM) models provide powerful tools to unravel the molecular mechanisms critical for melanoma development and drug resistance. Here, we expound briefly the basis of the mouse modeling design, the available technology for genetic engineering, and the aspects influencing the use of GEMs to model melanoma. Furthermore, we describe in detail the currently available GEM models of melanoma. Cancer 2017;123:2089-103. © 2017 American Cancer Society.


Assuntos
Modelos Animais de Doenças , Melanoma/genética , Camundongos , Neoplasias Cutâneas/genética , Animais , Engenharia Genética , Camundongos Knockout , Camundongos Transgênicos , Transcriptoma
18.
Nat Commun ; 7: 13418, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27857118

RESUMO

Nuclear 3'-end-polyadenylation is essential for the transport, stability and translation of virtually all eukaryotic mRNAs. Poly(A) tail extension can also occur in the cytoplasm, but the transcripts involved are incompletely understood, particularly in cancer. Here we identify a lineage-specific requirement of the cytoplasmic polyadenylation binding protein 4 (CPEB4) in malignant melanoma. CPEB4 is upregulated early in melanoma progression, as defined by computational and histological analyses. Melanoma cells are distinct from other tumour cell types in their dependency on CPEB4, not only to prevent mitotic aberrations, but to progress through G1/S cell cycle checkpoints. RNA immunoprecipitation, sequencing of bound transcripts and poly(A) length tests link the melanoma-specific functions of CPEB4 to signalling hubs specifically enriched in this disease. Essential in these CPEB4-controlled networks are the melanoma drivers MITF and RAB7A, a feature validated in clinical biopsies. These results provide new mechanistic links between cytoplasmic polyadenylation and lineage specification in melanoma.


Assuntos
Melanoma/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Ciclo Celular , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Melanoma/genética , Camundongos , Neoplasias Experimentais , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética
19.
PLoS One ; 10(10): e0140039, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26458221

RESUMO

Vaccines based on virus-like particles (VLPs) have proven effective in humans and animals. In this regard, the baculovirus expression vector system (BEVS) is one of the technologies of choice to generate such highly immunogenic vaccines. The extended use of these vaccines for human and animal populations is constrained because of high production costs, therefore a significant improvement in productivity is crucial to ensure their commercial viability. Here we describe the use of the previously described baculovirus expression cassette, called TB, to model the production of two VLP-forming vaccine antigens in insect cells. Capsid proteins from porcine circovirus type 2 (PCV2 Cap) and from the calicivirus that causes rabbit hemorrhagic disease (RHDV VP60) were expressed in insect cells using baculoviruses genetically engineered with the TB expression cassette. Productivity was compared to that obtained using standard counterpart vectors expressing the same proteins under the control of the polyhedrin promoter. Our results demonstrate that the use of the TB expression cassette increased the production yields of these vaccine antigens by around 300% with respect to the standard vectors. The recombinant proteins produced by TB-modified vectors were fully functional, forming VLPs identical in size and shape to those generated by the standard baculoviruses, as determined by electron microscopy analysis. The use of the TB expression cassette implies a simple modification of the baculovirus vectors that significantly improves the cost efficiency of VLP-based vaccine production, thereby facilitating the commercial viability and broad application of these vaccines for human and animal health.


Assuntos
Baculoviridae/genética , Baculoviridae/imunologia , Vetores Genéticos/biossíntese , Vacinas de Partículas Semelhantes a Vírus/biossíntese , Animais , Linhagem Celular , Análise Custo-Benefício , Vetores Genéticos/imunologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Regiões Promotoras Genéticas , Coelhos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Spodoptera/citologia , Suínos , Vacinas de Partículas Semelhantes a Vírus/genética
20.
Cancer Cell ; 26(1): 61-76, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24981740

RESUMO

Although common cancer hallmarks are well established, lineage-restricted oncogenes remain less understood. Here, we report an inherent dependency of melanoma cells on the small GTPase RAB7, identified within a lysosomal gene cluster that distinguishes this malignancy from over 35 tumor types. Analyses in human cells, clinical specimens, and mouse models demonstrated that RAB7 is an early-induced melanoma driver whose levels can be tuned to favor tumor invasion, ultimately defining metastatic risk. Importantly, RAB7 levels and function were independent of MITF, the best-characterized melanocyte lineage-specific transcription factor. Instead, we describe the neuroectodermal master modulator SOX10 and the oncogene MYC as RAB7 regulators. These results reveal a unique wiring of the lysosomal pathway that melanomas exploit to foster tumor progression.


Assuntos
Biomarcadores Tumorais/metabolismo , Linhagem da Célula , Lisossomos/enzimologia , Melanoma/enzimologia , Neoplasias Cutâneas/enzimologia , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Movimento Celular , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/genética , Melanoma/mortalidade , Melanoma/secundário , Melanoma/terapia , Camundongos , Invasividade Neoplásica , Estadiamento de Neoplasias , Transporte Proteico , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapia , Fatores de Tempo , Transfecção , Proteínas rab de Ligação ao GTP/genética , proteínas de unión al GTP Rab7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...